A Machine That Thinks by Russell Doubleday

A Typesetting Machine That Makes Mathematical Calculations


For many years it was thought impossible to find a short cut from author's manuscript to printing press—that is, to substitute a machine for the skilled hands that set the type from which a book or magazine is printed. Inventors have worked at this problem, and a number have solved it in various ways. To one who has seen the slow work of hand typesetting as the compositor builds up a long column of metal piece by piece, letter by letter, picking up each character from its allotted space in the case and placing it in its proper order and position, and then realises that much of the printed matter he sees is so produced, the wonder is how the enormous amount of it is ever accomplished.

In a page of this size there are more than a thousand separate pieces of type, which, if set by hand, would have to be taken one by one and placed in the compositor's "stick"; then when the line is nearly set it would have to be spaced out, or "justified," to fill out the line exactly. Then when the compositor's "stick" is full, or two and a half inches have been set, the type has to be taken out and placed in a long channel, or "galley." Each of these three operations requires considerable time and close application, and with each change there is the possibility of error. It is a long, expensive process.

A perfect typesetting machine should take the place of the hand compositor, setting the type letter by letter automatically in proper order at a maximum speed and with a minimum chance of error.

These three steps of hand composition, slow, expensive, open to many chances of mistake, have been covered at one stride at five times the speed, at one-third the cost, and much more accurately by a machine invented by Mr. Tolbert Lanston.

The operator of the Lanston machine sits at a keyboard, much like a typewriter in appearance, containing every character in common use (225 in all), and at a speed limited only by his dexterity he plays on the keys exactly as a typewriter works his machine. This is the sum total of human effort expended. The machine does all the rest of the work; makes the calculations and delivers the product in clean, shining new type, each piece perfect, each in its place, each line of exactly the right length, and each space between the words mathematically equal—absolutely "justified." It is practically hand composition with the human possibility of error, of weariness, of inattention, of ignorance, eliminated, and all accomplished with a celerity that is astonishing.

THE LANSTON TYPE-SETTER KEYBOARD
As each key is pressed a corresponding perforation is made in the roll of paper shown at the top of the machine. Each perforation stands for a character or a space.

This machine is a type-casting machine as well as a typesetter. It casts the type (individual characters) it sets, perfect in face and body, capable of being used in hand composition or put to press directly from the machine and printed from.

As each piece of type is separate, alterations are easily made. The type for correction, which the machine itself casts for the purpose—a lot of a's, b's, etc.—is simply substituted for the words misspelled or incorrectly used, as in hand composition.

The Lanston machine is composed of two parts, the keyboard and the casting-setting machine. The keyboard part may be placed wherever convenient, away from noise or anything that is likely to distract or interrupt the operator, and the perforated roll of paper produced by it (which governs the setting machine) may be taken away as fast as it is finished. In the setting-casting machine is located the brains. The five-inch roll of paper, perforated by the keyboard machine (a hole for every letter), gives the signal by means of compressed air to the mechanism that puts the matrix (or type mould) in position and casts the type letter by letter, each character following the proper sequence as marked by the perforations of the paper ribbon. By means of an indicator scale on the keyboard the operator can tell how many spaces there are between the words of the line and the remaining space to be filled out to make the line the proper width. This information is marked by perforations on the paper ribbon by the pressure of two keys, and when the ribbon is transferred to the casting machine these space perforations so govern the casting that the line of type delivered at the "galley" complete shall be of exactly the proper length, and the spaces between the words be equal to the infinitesimal fraction of an inch.

The casting machine is an ingenious mechanism of many complicated parts. In a word, the melted metal (a composition of zinc and lead) is forced into a mold of the letter to be cast. Two hundred and twenty-five of these moulds are collected in a steel frame about three inches square, and cool water is kept circulating about them, so that almost immediately after the molten metal is injected into the lines and dots of the letter cut in the mould it hardens and drops into its slot, a perfect piece of type.

All this is accomplished at a rate of four or five thousand "ems" per hour of the size of type used on this page. The letter M is the unit of measurement when the amount of any piece of composition is to be estimated, and is written "em."

If this page were set by hand (taking a compositor of more than average speed as a basis for figuring), at least one hour of steady work would be required, but this page set by the Lanston machine (the operator being of the same grade as the hand compositor) would require hardly more than fifteen minutes from the time the manuscript was put into the operator's hands to the delivery complete of the newly cast type in galleys ready to be made up into pages, if the process were carried on continuously.

This marvellous machine is capable of setting almost any size of type, from the minute "agate" to and including "pica," a letter more than one-eighth of an inch high, and a line of almost any desired width, the change from one size to any other requiring but a few minutes. The Lanston machine sets up tables of figures, poetry, and all those difficult pieces of composition that so try the patience of the hand compositor.

It is called the monotype because it casts and sets up the type piece by piece.

Another machine, invented by Mergenthaler, practically sets up the moulds, by a sort of typewriter arrangement, for a line at a time, and then a casting is taken of a whole line at once. This machine is used much in newspaper offices, where the cleverness of the compositor has to be depended upon and there is little or no time for corrections. Several other machines set the regular type that is made in type foundries, the type being placed in long channels, all of the same sort, in the same grooves, and slipped or set in its proper place by the machine operated by a man at the keyboard. These machines require a separate mechanism that distributes each type in its proper place after use, or else a separate compositor must be employed to do this by hand. The machines that set foundry type, moreover, require a great stock of it, just as many hundred pounds of expensive type are needed for hand composition.

WHERE THE "BRAINS" ARE LOCATED
The perforations in the paper ribbon (shown in the upper left-hand part of the picture) govern the action of the machine so that the proper characters are cast in the proper order, and also the spaces between the words.

Though a machine has been invented that will put an author's words into type, no mechanism has yet been invented that will do away with type altogether. It is one of the problems still to be solved.